
Deep dive into 
Binder

- Prasanna Kumar



Who am I?

▶ Prasanna Kumar
▶ Linux kernel enthusiast
▶ Contributed to open source projects
▶ Interested in Embedded devices and Android
▶ Can be reached at prasannatsmkumar@gmail.com
▶ Follow

▶ www.github.com/prasannatsm

▶ www.linkedin.com/in/prasannakumartsm/

▶ @prasannatsm

mailto:prasannatsmkumar@gmail.com
http://www.github.com/prasannatsm
https://www.linkedin.com/in/prasannakumartsm/
https://twitter.com/prasannatsm


What is Android

▶ OS for Smartphone and embedded devices
▶ Works on variety of hardware thanks to Linux kernel
▶ Code available with open source license (available source)
▶ A bunch of services that Apps rely on to provide their intended 

functionality



Android App

▶ An Android app consists of Activities, Services, Content Providers, 
Broadcast Receivers

▶ Gets a unique user id to provide data isolation between Apps
▶ Despite data isolation Apps can expose features and data to other 

applications in a secure manner
▶ These requires fast Inter Process Communication (IPC) mechanism
▶ Android security model requires Remote Procedure Call support
▶ Welcome to Binder



Binder

▶ Is a low overhead Inter Process Communication (IPC) and Remote 
Procedure Call (RPC) mechanism

▶ Implemented as a Linux kernel driver
▶ Makes Android framework a set of services which Apps would use
▶ Allows Android system services / framework components to run as 

separate processes
▶ Enables apps to be killed without any resource leaks
▶ Backbone of Android
▶ Audio, display, graphics, sensors etc won’t work without Binder => 

Unusable system
▶ Intents, Content Providers, Messenger / Handler all use Binder under the 

hood
▶ Works in client server model



Client Server model

Client Server



Binder framework

▶ A process cannot invoke another process’s method directly
▶ Binder framework makes client to feel it is calling server’s methods 

directly
▶ Binder framework includes Binder driver, libbinder, AIDL, IBinder and 

Binder interface, Parcel etc
▶ Binder driver is exposed via /dev/binder



Binder communication

▶ Most of the communication happens via ioctl call
▶ ioctl(binder_fd, BINDER_WRITE_READ, &write_read_obj);

▶ write_read_obj is an instance of ‘struct binder_write_read’

▶ write_command has a series of commands to binder driver
▶ Commands can be for book keeping (increment / decrement 

reference count), request for client death notification, request 
service from a server that needs a response (BC_TRANSACTION)



Binder transaction

▶ Server registers its capabilities with Binder driver and waits for request

▶ Each server gets a Binder token that identifies the service

▶ Client look up server, obtains the server’s binder token

▶ Client sends ioctl command containing the request to binder driver

▶ Binder driver suspends the caller, copies request data to server’s adders 
space, wakes up the waiting server and provides the request

▶ Server completes the requested action, sends the result via Binder driver

▶ Binder wakes up the suspended caller and provides the server’s reply

▶ The process of sending a request till getting back a response via the 
Binder driver is called as a Binder Transaction



Binder transaction

Client ServerBinder driver



Parcel, libbinder, IBinder

▶ For client and server to understand the request / response a 
common data exchange format should be used between them

▶ The common data format is called as Parcel
▶ Storing data in a Parcel is called as marshalling, retrieving data from 

a Parcel is called as umarshalling
▶ Low level calls and providing Parcel to binder driver is abstracted by 

libbinder (C++ native library)
▶ IBinder is an interface that service must implement in order to use 

libbinder
▶ A convenience Java interface called IBinder exists that calls the 

corresponding native IBinder interface



Proxies, Stubs and AIDL

▶ Binder driver understands ioctl commands
▶ AIDL is a interface definition language that describes the 

functionality that a server implements
▶ Proxy implements the AIDL interface, marshals/unmarshals the data 

and makes IBinder calls, this is used in client side
▶ Stub is similar to Proxy, used in server side
▶ AIDL tool parses AIDL file and auto generates Proxy and Stub in Java 

language
▶ Native apps should implement Proxy and Stub



Binder in action

Client ServerBinder driverProxy Stub



Service discovery

▶ Binder tokens are used to identify server
▶ Binder tokens are not fixed, changes on every boot
▶ Service discovery is required for finding out servers based on the 

functionality they provide
▶ Context manager is a process that stores binder token of servers 

registered with unique string acting as a key for the token
▶ Apps query the context manager with the unique string, obtains the 

binder token (using getSystemService API) and calls the service with 
that token

▶ Only one context manager can exists in a system so it has to be 
started before any other server starts



Service discovery

▶ ServiceManager is the context manager in Android
▶ ServiceManager registers first with binder and gets binder token 0
▶ It gets binder token 0 on every boot
▶ All other system services register their tokens with ServiceManager



Location Request

▶ To get location an app (client) calls LocationManger’s (server) 
getBestProvider method



Thank you



Questions?



Backup Slides



Binder History

▶ Started at Be, Inc, as a part of “next generation BeOS” in 2001
▶ Binder’s first implementation is used in Palm Cobalt (a micro kernel OS) 

after Be, Inc, was acquired by PalmSource
▶ Binder is ported to Linux in 2005 as Palm started using Linux and Binder’s 

code is open sourced
▶ Open source implementation is called as OpenBinder
▶ Dianne Hackborn, a key member of OpenBinder team, joined Android 

team at Google in 2008
▶ Used OpenBinder for initial Android bring up and used in internal Android 

release
▶ User space parts of Binder were rewritten due to license incompatibility
▶ Kernel driver is rewritten to follow Linux kernel model and it is used in 

external release



Why not existing IPC mechanism?

▶ Most of the low level Android libraries use standard IPC and not 
Binder

▶ Input flinger uses pipes to send input data
▶ Setprop, getprop uses sockets



Linux mainline kernel and Binder

▶ Attempts were made to implement Binder features with existing IPC 
mechanisms but all failed eventually

▶ Except Binder no other IPC mechanism has ioctl based interface
▶ Global lock in Binder was removed due to push from mainline Linux 

developers leading to massive improvement in Binder’s 
performance


